A New Distributed MIKEY Mode to Secure e-Health Applications

نویسندگان

  • Mohammed Riyadh Abdmeziem
  • Djamel Tandjaoui
  • Imed Romdhani
چکیده

Securing e-health applications in the context of Internet of Things (IoT) is challenging. Indeed, resources scarcity in such environment hinders the implementation of existing standard based protocols. Among these protocols, MIKEY (Multimedia Internet KEYing) aims at establishing security credentials between two communicating entities. However, the existing MIKEY modes fail to meet IoT specificities. In particular, the pre-shared key mode is energy efficient, but suffers from severe scalability issues. On the other hand, asymmetric modes such as the public key mode are scalable, but are highly resource consuming. To address this issue, we combine two previously proposed approaches to introduce a new distributed MIKEY mode. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the pre-shared mode is used in the constrained part of the network, while the public key mode is used in the unconstrained part of the network. Preliminary results show that our proposed mode is energy preserving whereas its security properties are kept safe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Distributed Authentication Model for an E-Health Network Using Blockchain

Introduction: One of the most important and challenging areas under the influence of information technology is the field of health. This pervasive influence has led to the development of electronic health (e-health) networks with a variety of services of different qualities. The issue of security management, maintaining confidentiality and data integrity, and exchanging it in a secure environme...

متن کامل

A Distributed Authentication Model for an E-Health Network Using Blockchain

Introduction: One of the most important and challenging areas under the influence of information technology is the field of health. This pervasive influence has led to the development of electronic health (e-health) networks with a variety of services of different qualities. The issue of security management, maintaining confidentiality and data integrity, and exchanging it in a secure environme...

متن کامل

Secure Service Invocation in a Peer-to-Peer Environment Using JXTA-SOAP

The effective convergence of service-oriented architectures (SOA) and peer-to-peer (P2P) is an urgent task, with many important applications ranging from e-business to ambient intelligence. A considerable standardization effort is being carried out from both SOA and P2P communities, but a complete platform for the development of secure, distributed applications is still missing. In this context...

متن کامل

Novel Lightweight Signcryption-Based Key Distribution Mechanisms for MIKEY

Multimedia Internet KEYing (MIKEY) is a standard key management protocol, used to set up common secrets between any two parties for multiple scenarios of communications. As MIKEY becomes widely deployed, it becomes worthwhile to not confine its applications to real-time or other specific applications, but also to extend the standard to other scenarios as well. For instance, MIKEY can be used to...

متن کامل

Rfc 5197 Mikey

On the Applicability of Various Multimedia Internet KEYing (MIKEY) Modes and Extensions Status of This Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Abstract Multimedia Internet Keying (MIKEY) is a key management protocol that can be used for real-time applications. In particular, it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016